Abstract

The response of marine biodiversity to mariculture has long been a research focus in marine ecology. However, the effects of seaweed cultivation on biological community assembly are poorly understood, especially in diverse communities with distinct ecological characteristics. In this study, we used environmental DNA metabarcoding to investigate the spatial distribution patterns of bacterial, protistan, and metazoan diversity, aiming to reveal the mechanisms of community assembly in the Pyropia haitanensis cultivation zone along the Fujian coast, China. We found that, compared with the biological communities in control zones, those in P. haitanensis cultivation zones exhibited stronger geographic distance-decay patterns and displayed more complex and stable network structures. Deterministic processes (environmental selection) played a more important role in the assembly of bacterial, protistan, and metazoan communities in P. haitanensis cultivation zones, especially metazoan communities. Variance partitioning analysis showed that environmental variables made greater contributions to the diversity of the three types of communities within the P. haitanensis cultivation zones than in the control zones. Partial least squares path modeling analysis identified nitrate‑nitrogen (NO3-N), pH, particulate organic carbon (POC), and dissolved organic carbon (DOC) as the key environmental variables affecting biodiversity. Overall, the environmental heterogeneity caused by the large-scale cultivation of P. haitanensis could be the crucial factor influencing the composition and structure of various biological communities. Our results highlight the importance of the responses of multi-group organisms to the cultivation of seaweed, and provide insights into the coexistence patterns of biodiversity at the spatial scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.