Abstract

The World Health Organization in 2016 estimated that over 20% of the global disease burden and deaths were attributed to modifiable environmental factors. However, data clearly characterizing the impact of environmental exposures and health endpoints in African populations is limited. To describe recent progress and identify important research gaps, we reviewed literature on environmental health research in African populations over the last decade, as well as research incorporating both genomic and environmental factors. We queried PubMed for peer-reviewed research articles, reviews, or books examining environmental exposures and health outcomes in human populations in Africa. Searches utilized medical subheading (MeSH) terms for environmental exposure categories listed in the March 2018 US National Report on Human Exposure to Environmental Chemicals, which includes chemicals with worldwide distributions. Our search strategy retrieved 540 relevant publications, with studies evaluating health impacts of ambient air pollution (n=105), indoor air pollution (n = 166), heavy metals (n = 130), pesticides (n = 95), dietary mold (n = 61), indoor mold (n = 9), per- and polyfluoroalkyl substances (PFASs, n = 0), electronic waste (n = 9), environmental phenols (n = 4), flame retardants (n = 8), and phthalates (n = 3), where publications could belong to more than one exposure category. Only 23 publications characterized both environmental and genomic risk factors. Cardiovascular and respiratory health endpoints impacted by air pollution were comparable to observations in other countries. Air pollution exposures unique to Africa and some other resource limited settings were dust and specific occupational exposures. Literature describing harmful health effects of metals, pesticides, and dietary mold represented a context unique to Africa. Studies of exposures to phthalates, PFASs, phenols, and flame retardants were very limited. These results underscore the need for further focus on current and emerging environmental and chemical health risks as well as better integration of genomic and environmental factors in African research studies. Environmental exposures with distinct routes of exposure, unique co-exposures and co-morbidities, combined with the extensive genomic diversity in Africa may lead to the identification of novel mechanisms underlying complex disease and promising potential for translation to global public health.

Highlights

  • A global assessment by the World Health Organization (WHO) in 2016 estimated that 24% of the global disease burden and 23% of all deaths were attributed to modifiable environmental factors, including physical, chemical, and biological hazards to human health (Prüss-Ustün et al, 2016)

  • The largest number of publications identified in our search represented exposures to indoor air pollution (n = 166), heavy metals (n = 130), ambient air pollution (n = 105), pesticides (n = 95), and dietary mold (n = 61)

  • Fewer publications were retrieved for the exposure categories perfluoroalkyl substances (n = 16 initially, 0 after restricted to only those evaluating health outcomes), electronic waste (n = 9), indoor mold (n = 9), flame retardants (n = 8), environmental phenols (n = 4), and phthalates (n = 3)

Read more

Summary

Introduction

A global assessment by the World Health Organization (WHO) in 2016 estimated that 24% of the global disease burden and 23% of all deaths were attributed to modifiable environmental factors, including physical, chemical, and biological hazards to human health (Prüss-Ustün et al, 2016). A meeting of scientists around this issue took place in South Africa in 2015, leading to a “call to action” to utilize available scientific knowledge to address the impact of EDCs on human as well as wildlife health in Africa (Bornman et al, 2017). This meeting report called for a shift from reaction to prevention, with utilization of existing datasets, increased biomonitoring, and surveillance of environmental chemicals, as well as further research including the support of longitudinal studies (Bornman et al, 2017)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call