Abstract

The world's move towards revival of eco-labelled products has created a huge urge to explore new means which are healthier for the global community. Among such means, plant-based bio-pigments for coloration of matrix are gaining worldwide fame, particularly in the textile sector. For the purpose of appraising new source of eco-friendly dyes, using microwave irradiation techniques, Coral Jasmine flowers have been explored for the bio-dyeing of wool. The colorant was extracted in acidic medium owing to nature of fabric, and both stuffs have been exposed to microwave treatment up to 5min. Bio-coloration of MW irradiated and unirradiated wool was done using MW irradiated and unirradiated extract for observing high yield. Central composite design (CCD) as statistical method was utilized to see the significance of dyeing parameters chosen for mordanting to develop colorfast shades. Different concentrations of sustainable chemicals and bio-mordants as per weight of fabric were employed to introduce new shades with improved colorfastness properties. International standard textile methods determining shade permanency (fastness) have been employed onto selected dyed-mordanted fabrics. Good yield of colorant was observed when MW irradiated wool fabric was dyed at 75°C for 45min with extract of 7pH, having 1.5g/100mL of salt solution; the promising color yield was observed. As per gray scale ratings observed after ISO standard methods, pine nut as bio-mordant and iron salt as chemical mordant have developed colorfast shades. Conclusively, it can be recommended that methods for the isolation of colorants from new dye yielding plants, MW heating method as suitable clean technology and medicinal-based bio-mordants should be employed for getting permanent gamutes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.