Abstract

Due to freshwater supplement scarcity and heavy human activities, the fresh water wetland ecosystem in Yellow River Delta is facing disintegrated deterioration, and it is seriously affecting the health of the Yellow River ecosystem. This paper identifies the restoration objectives of wetland aiming to protect ecological and economic values and development as well as the water resources of the Yellow River. The hydraulic and groundwater coupling model and Landscape Ecological Decision and Evaluation Support System (LEDESS) of the Yellow River Delta were established to calculate environmental flows of degraded wetlands. LEDESS is a computer-based model developed and used to assess and evaluate the effects of land-use changes on nature. In this study, LEDESS is used to assess and evaluate the ecological effects and the restoration possibilities considering several environmental flows’ supplement scenarios. This included the changes of suitable habitat conditions and its ecological carrying capacities for indicator species, e.g., Red-crowned crane (Grus japonensis), Oriental stork (Ciconia boyciana), and Saunder’s gull (Larus relictus), and changing of ecological patterns. The results showed that replenishing fresh water to wetlands is one of the effective adaptive measures to mitigate wetland degradation and improve its habitat quality and carrying capacities. This study indicated that landscape ecology approach is not only considered as a good way to solve complex problems in ecosystem management but also can be used to decide on the environmental flows and assess its ecological effects in large-scale wetland rehabilitation. This integrated method could make environmental flows estimated and assessment more rational than the results of hydrologic methods. It could assist decision makers to “see” the ecological effects after water supplementing and so alleviate the contradictions between environmental flows and production water demands, and can facilitate the implementation of environmental flows in most countries with water resources shortage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call