Abstract

Environmental fate of 58 pharmaceutical compounds (PhCs) grouped into 11 therapeutic classes in the three different waters, hospital effluent, sewage treatment plant (STP) and river water, was estimated by combination of their quantitative concentration analysis and evaluation of their extent of contribution as loading sources. At the same time, distribution of six classes of antimicrobial-resistant bacteria (AMRB) in the same water samples was estimated by screening of individual PhC-resistant microbes grown on each specific chromogenic medium. The results indicate that 48 PhCs were detected ranged from 1 ng/L (losartan carboxylic acid) to 228 μg/L (acetaminophen sulfate) in hospital effluent, and contribution of the pollution load derived from hospital effluent to STP influent was estimated as 0.1% to 15%. On the other hand, contribution of STP effluent to river water was high, 32% to 60% for antibacterials, antipertensives and X-ray contrast media. In the cases for AMRB, detected numbers of colonies of AMRB in hospital effluent ranged from 29 CFU/mL to 1805 CFU/mL, and the estimated contribution of the AMRB pollution load derived from hospital effluent to STP influent was as low as 0.1% (levofloxacin and olmesartan) to 5.1% (N-desmethyl tamoxifen). Although the contribution of STPs as loading sources of PhCs and AMRB in surface waters was large, ozonation as an advanced water treatment system effectively removed a wide range of both PhCs and AMRB in water samples. These results suggest the importance of reducing environmental pollutant loads (not only at STPs but also at medical facilities) before being discharged into the surface waters, to both conserve water and keep the water environment safe. To our knowledge, this is the first report to show the distribution and contribution of AMRB from hospital effluent to the surface waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call