Abstract

Because of their usually high molecular weight, polymers are generally considered as being of low environmental concern and are, therefore, exempted from registration and evaluation within REACH. This exemption is currently being reviewed by the European Commission. Against this background, data on the environmental fate and effects of selected water-soluble synthetic organic polymers used in cosmetic products were evaluated. The considered polymers include non-ionic polyethylene glycols (PEGs), anionic homo- and copolymers of acrylic acid (AA-P&CoPs), and cationic polyquaterniums (PQs). The PEGs are more amenable to biodegradation than the AA-P&CoPs and the PQs, which biodegrade slowly. In wastewater treatment plants, sorption and precipitation are expected to lead to an effective removal of the considered polymers from the wastewater. Uptake and bioaccumulation in aquatic organisms are limited by the large molecular size and, for AA-P&CoPs and PQs, the ionic charge of the polymers. In aquatic ecotoxicity tests, the PEGs and the AA-P&CoPs showed generally no to low toxicity. Effects of AA-P&CoPs on algae and crustaceans are attributed to the chelation of cationic nutrients in soft water, with toxicity being mitigated at higher water hardness. Toxicity of the cationic PQs to aquatic organisms ranged from absent to high, depending on the polymer structure, charge density and molecular weight, as well as on the test organism and test conditions. The observed effects most likely result from interactions with the organisms’ surfaces. Aquatic toxicity of the PQs is reduced by dissolved organic carbon, suspended solids, sediments minerals, and at higher water hardness, representative of natural conditions. Results from toxicity tests with sediment and soil organisms were only identified for homopolymers of acrylic acid, showing no toxicity. The evaluation of the available ecotoxicity data suggests that test methods may need to be adapted to the respective polymer type, and further standardised to improve reproducibility. Based on the identified data, the considered polymers are likely to be of low environmental concern. However, this conclusion must be seen as preliminary, since environmental concentrations could not be estimated, and further ecotoxicity data are required, e.g., for sediment and soil organisms.

Highlights

  • IntroductionSynthetic polymers are manufactured macromolecules consisting of one or more types of monomers that are covalently bound to each other

  • According to Article 138 (2) of the REACH Regulation [4], the exemption of polymers from registration under REACH is currently being reviewed with the objectives (a) to analyse human health and environmental risks posed by polymers as compared to other chemicals, and (b) to evaluate if there is a need to register certain types of polymers

  • The second report [6] suggests an approach for identifying polymers of low concern (PLC) that is relatively similar to the approach of the US EPA, which is based on criteria such as limited content of low molecular weight (MW) material, limited presence of reactive functional groups, and no or low cationic charge density [1, 7]

Read more

Summary

Introduction

Synthetic polymers are manufactured macromolecules consisting of one or more types of monomers that are covalently bound to each other. According to Article 138 (2) of the REACH Regulation [4], the exemption of polymers from registration under REACH is currently being reviewed with the objectives (a) to analyse human health and environmental risks posed by polymers as compared to other chemicals, and (b) to evaluate if there is a need to register certain types of polymers. In this context, three reports were prepared for the European Commission. Polymers are currently being addressed by ECETOC’s Polymers Task Force, which proposed a conceptual framework for polymer risk assessment [9], and examined the applicability of chemical-analytical methods, standardised test methods, and predictive models [11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.