Abstract

The soil-air partition coefficient (KSA) values are commonly utilized to examine the fate of organic contaminants in soils; however, their measurement has been lacking for semi-volatile petroleum hydrocarbons within soil contaminated by crude oil. This research utilized a solid-phase fugacity meter to determine the KSA values of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) under crucial environmental conditions. The results showed a notable increase in KSA values with the extent of crude oil contamination in soil. Specifically, in the 3 % crude oil treatment, the KSA values for n-alkanes and PAHs increased by 1.16 and 0.66 times, respectively, compared to the 1 % crude oil treatment. However, the KSA values decreased with changes in temperature, water content, and particle size within the specified experimental range. Among these factors, temperature played a significant role. The KSA values for n-alkanes and PAHs decreased by 0.27–0.89 and 0.61–0.83 times, respectively, with a temperature increase from 5 °C to 35 °C. Moreover, the research identified that the molecular weight of n-alkanes and PAHs contributed to variations in KSA values under identical environmental factors. With an increase in temperature from 5 °C to 35 °C, the range of n-alkanes present in the air phase expanded from C11 to C34, and PAHs showed elevated levels of acenaphthene (ACE) and benzo (b) fluoranthene (BbFA). Furthermore, heightened water content and particle size were observed to facilitate the volatilization of low molecular weight petroleum hydrocarbons. The effect of environmental variables on soil-air partitioning was evaluated using the Box-Behnken design (BBD) model, resulting in the attainment of the lowest log KSA values. These results illustrate that soil-air partitioning is a complex process influenced by various factors. In conclusion, this study improves our comprehension and predictive capabilities concerning the behavior and fate of n-alkanes and PAHs within soil-air systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call