Abstract

To illustrate methods for assessing environmental exposures associated with lung cancer risk, we investigated anthropogenic based air pollutant data in a major metropolitan area using United States-Environmental Protection Agency (US-EPA) Toxic Release Inventory (TRI) (1987–2017), and PM2.5 (1998–2016) and NO2 (1996–2012) concentrations from NASA satellite data. We studied chemicals reported according to the following five exposome features: (1) International Agency for Research on Cancer (IARC) cancer grouping; (2) priority EPA polycyclic aromatic hydrocarbons (PAHs); (3) component of diesel exhaust; (4) status as a volatile organic compound (VOC); and (5) evidence of lung carcinogenesis. Published articles from PubChem were tallied for occurrences of 10 key characteristics of cancer-causing agents on those chemicals. Zone Improvement Plan (ZIP) codes with higher exposures were identified in two ways: (1) combined mean exposure from all features, and (2) hazard index derived through a multi-step multi-criteria decision analysis (MMCDA) process. VOCs, IARC Group 1 carcinogens consisted 82.3% and 11.5% of the reported TRI emissions, respectively. ZIP codes along major highways tended to have greater exposure. The MMCDA approach yielded hazard indices based on imputed toxicity, occurrence, and persistence for risk assessment. Despite many studies describing environmental exposures and lung cancer risk, this study develops a method to integrate these exposures into population-based exposure estimates that could be incorporated into future lung cancer screening trials and benefit public health surveillance of lung cancer incidence. Our methodology may be applied to probe other hazardous exposures for other cancers.

Highlights

  • In the United States, lung cancer is the leading cancer killer in both men and women (Siegel et al 2020)

  • 11.5% (30,935,548 lbs) were from 16 unique chemicals that were classified as International Agency for Research on Cancer (IARC) Group 1; 2.1% (5,567,528 lbs) were from 8 unique chemicals that were classified as IARC Group 2A; 12.3% (33,054,547 lbs) were from 33 unique chemicals that were classified as IARC Group 2B; and 44.7% (119,894,567 lbs) were from 24 unique chemicals that were classified as IARC Group 3

  • We investigated hazardous air exposure from anthropogenic sources in Zone Improvement Plan (ZIP) codes of a major US metropolitan area using EPA’s Toxic Release Inventory and National Aeronautics and Space Administration (NASA) satellite data

Read more

Summary

Introduction

In the United States, lung cancer is the leading cancer killer in both men and women (Siegel et al 2020). The Philadelphia metropolitan area, part of the Greater Delaware Valley, has lung and bronchus cancer incidence rates of 75.8 per 100,000, higher than the national rate of 59.3 per 100,000 and Pennsylvania’s rate of 64.0 per 100,000 for the 2013 to 2017 timeframe (The Centers for Disease Control and Prevention (CDC) 2020; Pennsylvania Department of Health (EDDIE) 2020). Data from the National Lung Cancer Screening (LCS) Trial suggests that LCS identifies less than 50% of patients who will develop lung cancer and only 4% of individuals that are eligible for LCS seek lowdose computed tomography (Kramer et al 2011; National Lung Screening Trial Research 2011a, National Lung Screening Trial Research 2011b). Developing methods to identify sub-populations at risk for developing lung cancer could improve the outcomes of lung cancer screening trials and inform “precision” lung cancer screening. Precision public health refers to targeting valuable resources to the most vulnerable as defined by Dowell et al (Dowell et al 2016)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call