Abstract

Preterm babies treated with synthetic glucocorticoids in utero exhibit behavioural alterations and disturbances in brain maturation during postnatal life. Accordingly, it has been shown in preclinical studies that SGC exposure at a clinical dose alters the presynaptic and postsynaptic structures and results in synaptic impairments. However, the precise mechanism by which SGC exposure impairs synaptic protein expression and its implications are not fully elucidated. Therefore, the purpose of this study was to investigate the effect of prenatal exposure to a clinical dose of betamethasone on the pre- and postsynaptic proteins expression in the developing rat cerebellum and prefrontal cortex, whose synchronized synaptic activity is crucial for motor control and learning.Consequently, the first objective of the present study was to determine whether prenatal betamethasone -equivalent to the clinically used dose- alters cerebellar vermal and cortical expression of synaptophysin, synaptotagmin I, post-synaptic density protein 95 and gephyrin - four important pre- and post-synaptic proteins, respectively- at a relevant adolescent stage. In addition, our second objective was to assess whether prenatal betamethasone administration induced coordination impairment using a rotarod test.On the other hand, it has been shown that the environmental enrichment is capable of improving synaptic transmission and recovering various behavioural impairments. Nevertheless, there is not enough information about the effect of this non-pharmacological preclinical approach on the regulation of this cerebellar and cortical synaptic proteins. Therefore, the third objective of this study was to examine whether environmental enrichment exposure could recover the possible molecular and behavioural impairments in the offspring at the same developmental stage.The principal data showed that adolescent rats prenatally treated with betamethasone exhibited underexpression of synaptophysin in the vermal cerebellum, but not change in levels of synaptotagmin I, post-synaptic density protein 95 and gephyrin. Analysis of the same pre- and post-synaptic proteins no showed differences in the frontal cortex of the same rats. These results were accompanied by an increase in the number of falls in the rotarod test, when the speed of rotation was fixed and when it was in acceleration, which means motor coordination impairments. Importantly, we found that environmental enrichment restores the betamethasone-induced reduction in the cerebellar synaptophysin together with a recover in the motor coordination impairments in prenatally betamethasone-exposed adolescent rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.