Abstract

Background. Housing animals in an enriched environment improves motor and cognitive performance and anatomical connectivity in rodent lesion models of Huntington disease and transplantation of embryonic striatal grafts. Objective. The authors evaluate the extent to which environmental enrichment can modify synaptic plasticity in the host-graft neuronal circuitry to try to find a physiological substrate for the observed improvements. Methods. C57BL/6 mice, housed in enriched or standard environments, received unilateral quinolinic acid lesions of the striatum, followed by embryonic striatal grafts. Then, 3 months posttransplantation, synaptic physiology and plasticity were evaluated by extracellular recording from in vitro striatal slices. Results. Environmental enrichment had no effect on the chance of long-term depression (LTD) induction or expression of LTD from either normal or grafted striatum. In contrast, enrichment increased the chance of long-term potentiation (LTP) induction and level of expression associated with increased levels of brain-derived neurotrophic factor within both the intact and grafted striatum compared with levels in the striatum of animals housed in standard environments. Conclusions. Environmental enrichment induces changes in host-graft corticostriatal LTP, thus providing a potential physiological substrate for the enrichment-induced improvement in motor and cognitive performance. The effect may be mediated by modulation of the trophic environment in which the grafted cells develop and integrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call