Abstract

Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia.

Highlights

  • Perinatal asphyxia during delivery produces long-term deficits and represents a major problem in neonatal and pediatric care [1,2,3]

  • We have described the neurobehavioral development in pups exposed to various injuries: excitotoxic injury, maternal deprivation and neonatal hypoxia [25,26,27]

  • In a previous study we have shown that pups exposed to perinatal asphyxia have a marked delay in the neurobehavioral development [28]

Read more

Summary

Introduction

Perinatal asphyxia during delivery produces long-term deficits and represents a major problem in neonatal and pediatric care [1,2,3]. It is based on a temporary interruption of oxygen availability that causes metabolic challenge, even when the distress does not lead to a fatal outcome [4]. Different clinical parameters have been used to both diagnose and predict the prognosis for perinatal asphyxia, and clinically, this type of brain injury is called hypoxic-ischemic encephalopathy (HIE). Long-term neurologic injury cannot be predicted by these parameters after mild to moderate asphyxia [6]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call