Abstract

Environmental engineering is the application of science and engineering principles to the design of environmental protection and remediation strategies using physical, chemical, and biological treatment methods, all within a regulatory framework. Environmental engineers aim to minimize the adverse effects of human activities on the natural environment. While environmental engineering is often defined by Core Disciplines, it can better be described as a field of study dedicated to three primary objectives. The first is to clean and protect the environment from pollution: think of this as “fixing the past.” Before environmental regulations were introduced, chemicals were released directly into the environment, and there remain tens of thousands of contaminated sites throughout the world. In order to protect human health and the integrity of the environment, engineers study the transport and fate of pollutants through natural systems (see Environmental Transport Modeling) and design treatment systems to restore contaminated sites (see Remediation of Contaminated Sites). The second goal is to control waste streams generated as a result of human activities. The treatment of dirty effluents represents environmental engineers “dealing with the present,” or managing human-generated wastes and byproducts so that they are not released in a way that threatens the integrity of the environment; relevant core disciplines include Wastewater Treatment, Air Pollution Control, and Solid and Hazardous Waste Treatment. Recent advances focus on minimizing waste generation by reusing, recycling, and recovering resources. The third goal is to provide and ensure safe water, air, and land for future generations of humans and organisms. Pollution avoidance and future resource protection can be viewed as “planning for the future.” In addition to ensuring clean ambient air, water, and soil, and providing safe drinking water (see Water Supply and Treatment) for all people, this ambitious goal is encouraging groundbreaking work in sustainable development and green engineering. While there is a significant degree of overlap between environmental science and environmental engineering, one of the primary distinctions is that environmental engineers bridge natural systems with engineered systems and the built environment. Environmental scientists aim to understand natural systems and cycles in the environment. Both scientists and engineers work to understand the influence of human activities on these systems and cycles. Environmental engineers utilize this knowledge to design and implement strategies for minimizing the adverse effects of human activities on the integrity of water, air, and land resources. Addressing these objectives requires fundamental knowledge in a diverse set of disciplines—including, for example, chemistry, biology, physics, hydrology, geology, ecology, atmospheric science, risk assessment, life cycle assessment, toxicology, epidemiology, economics, social science, civil engineering, chemical engineering, and industrial ecology—as well as a broad understanding of governing regulations, economic drivers, and social influences. In this way, environmental engineering overlaps with many other fields of study, including environmental science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.