Abstract
ABSTRACT Historically, the study of swimming eels (genus Anguilla) has been integral to our understanding of the mechanics and muscle activity patterns used by fish to propel themselves in the aquatic environment. However, no quantitative kinematic analysis has been reported for these animals. Additionally, eels are known to make transient terrestrial excursions, and in the past it has been presumed (but never tested) that the patterns of undulatory movement used terrestrially are similar to those used during swimming. In this study, high-speed video was used to characterize the kinematic patterns of undulatory locomotion in water and on land in the American eel Anguilla rostrata. During swimming, eels show a nonlinear increase in the amplitude of lateral undulations along their bodies, reaching an average maximum of 0.08L, where L is total length, at the tip of the tail. However, in contrast to previous observations, the most anterior regions of their bodies do not undergo significant undulation. In addition, a temporal lag (typically 10–15% of an undulatory cycle) exists between maximal flexion and displacement at any given longitudinal position. Swimming speed does not have a consistent effect on this lag or on the stride length (distance moved per tailbeat) of the animal. Speed does have subtle (although statistically insignificant) effects on the patterns of undulatory amplitude and intervertebral flexion along the body. On land, eels also use lateral undulations to propel themselves; however, their entire bodies are typically bent into waves, and the undulatory amplitude at all body positions is significantly greater than during swimming at equivalent speeds. The temporal lag between flexion and displacement seen during swimming is not present during terrestrial locomotion. While eels cannot move forwards as quickly on land as they do in water, they do increase locomotor speed with increasing tailbeat frequency. The clear kinematic distinctions present between aquatic and terrestrial locomotor sequences suggest that eels might be using different axial muscle activity patterns to locomote in the different environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.