Abstract

A number of challenges arise when using ferrocene as a component of electrochemical biosensors, including solubility in aqueous solutions. Therefore, entrapment of the biotin-ferrocene molecules within the chitosan film provides a route for immobilization on an electroactive surface such as an electrode while making the system water compatible. The use of the chitosan-ferrocene bioconjugate thin film on the electrode surface produces a signal that can be monitored in aqueous media. Herein, we discuss a series of modified ferrocene molecules that contain various linkers that provide non-covalent entanglement points to the chitosan medium. The electrochemical analysis and electron microscopy results show marked differences in the ferrocene loaded chitosan polymers when the termini of the ferrocene-linker vary between –SH and –NH2. The –SH modified systems showed increased reversible and robust electrochemical signals relative to the –NH2 congeners. Further studies showed that non-covalent impregnation strategy used is robust to degradation and less than 1% of the ferrocene molecules were leached over time. These results indicate that there are specific considerations needed when using chitosan-ferrocene systems as components in sensor arrays in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.