Abstract

This paper presents a comprehensive analysis of the operation management of a multi-node community microgrid (MG), emphasizing power flow constraints and the integration of photovoltaic (PV) and battery systems. This study formulates MG operation management as a multi-objective optimal power flow problem, aiming to minimize costs (maximize profits) and emissions simultaneously. The multi-objective particle swarm optimization (MPSO) method is employed to tackle this complex optimization challenge, yielding a Pareto optimal front that represents the trade-offs between these conflicting objectives. In addition to the normative operation scenarios, this research investigates the robustness of the MG system in the face of abnormal situations. These abnormal scenarios include damage to the PV system, sudden increases in the MG load, and the loss of connection to the main electricity grid. This study focuses on Lombok Island, Indonesia as a practical case study, acknowledging the ongoing efforts to implement the community MG concept in this region. It is observed that when the access to the electricity grid is limited, the energy not served (ENS) increases to 2.88 MWh. During the fault scenario in which there is a 20% increase in the hourly load of each MG, a total of 4.5 MWh ENS is obtained. It is concluded that a resilient operation management system is required to ensure a consistent and reliable energy supply in community MGs in the face of disruptions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call