Abstract

Mitigation of environmental dust from surfaces becomes one of the challenges for maintaining the optical characteristics of surfaces. Dust repelling from hydrophobic and hydrophilic surfaces under vibrational excitation is investigated and the percentage of dust repelled from surfaces is evaluated. The characteristics of the dust particles are examined and dust adhesion on surfaces under molecular forces (van der Walls) is explored. High speed recording system is utilized to monitor dust repelling from the surfaces. The dust residues, which are not repelled from the sample surfaces, are analyzed and the percentage of area coverage of the dust repelled from the surfaces is assessed. The repelling height of the dust is predicted analytically, and the findings are compared with the experimental data. Findings revealed that the analytical predictions of dust repelling height are in good agreement with the experimental data. Due to none-stoichiometric elemental compositions in the dust compounds, ionic forces are created while forming the cluster-like structures because of particle adhesion. The vibrational excitation repels dust from sample surfaces in the form of cluster-like structures. Dust repelled from hydrophobic surface results in a larger clean area on the hydrophobic surface (80% of total surface area) than that of the hydrophilic surface (20% of total surface area).

Highlights

  • Mitigation of environmental dust from surfaces becomes one of the challenges for maintaining the optical characteristics of surfaces

  • Environmental dust mitigation from hydrophobic and hydrophilic surfaces under vibrational motion is investigated for the various tilt angle of the sample surfaces

  • Environmental dust mitigation from hydrophilic and hydrophobized glass surfaces is investigated under the influence of vibrational excitation

Read more

Summary

Introduction

Mitigation of environmental dust from surfaces becomes one of the challenges for maintaining the optical characteristics of surfaces. A high speed recording system was used to monitor the dust particles repelled from the sample surfaces during the vibrational sonic excitation.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.