Abstract

High sea surface temperatures caused global coral bleaching during 2015-2016. During this thermal stress event, we quantified within- and among-species variability in bleaching severity for critical habitat-forming Acropora corals. The objective of this study was to understand the drivers of spatial and species-specific variation in the bleaching susceptibility of these corals, and to evaluate whether bleaching susceptibility under extreme thermal stress was consistent with that observed during less severe bleaching events. We surveyed and mapped Acropora corals at 10 sites (N = 596) around the Lizard Island group on the northern Great Barrier Reef. For each colony, bleaching severity was quantified using a new image analysis technique, and we assessed whether small-scale environmental variables (depth, microhabitat, competition intensity) and species traits (colony morphology, colony size, known symbiont clade association) explained variation in bleaching. Results showed that during severe thermal stress, bleaching of branching corals was linked to microhabitat features, and was more severe at reef edge compared with lagoonal sites. Bleaching severity worsened over a very short time-frame (~1 week), but did not differ systematically with water depth, competition intensity, or colony size. At our study location, within- and among-species variation in bleaching severity was relatively low compared to the level of variation reported in the literature. More broadly, our results indicate that variability in bleaching susceptibility during extreme thermal stress is not consistent with that observed during previous bleaching events that have ranged in severity among globally dispersed sites, with fewer species escaping bleaching during severe thermal stress. In addition, shaded microhabitats can provide a refuge from bleaching which provides further evidence of the importance of topographic complexity for maintaining the biodiversity and ecosystem functioning of coral reefs.

Highlights

  • Mass coral bleaching in response to increased sea surface temperature is a major threat to the persistence of coral reefs

  • Among the set of hypothesized correlates of bleaching severity, only day of observation, microhabitat, distance of colonies from the open ocean, and colony morphology explained a significant amount of the variation in bleaching severity

  • This temporal variation was equivalent in magnitude to the variation in bleaching severity among microhabitats

Read more

Summary

Introduction

Mass coral bleaching in response to increased sea surface temperature is a major threat to the persistence of coral reefs. Analyses of sea surface temperature data indicate that ocean warming has accelerated in recent decades, and that coral reefs are increasingly being exposed to thermal stress (Heron et al, 2016). In 1998, increased seawater temperatures caused widespread bleaching and coral mortality in most of the world’s coral reef regions, with mortality in excess of 90% on some reefs in the central and western Indian Ocean (Spalding and Brown, 2015). The recent thermal stress event caused severe bleaching on the northern section of the Great Barrier Reef in 2016, where approximately one third of reefs experienced levels of heat stress that were up to two-fold higher than those experienced in the 1998 bleaching event in the same region (Hughes et al, 2017). We here investigate whether species susceptibility to bleaching under extreme heat stress is consistent with species susceptibility reported during previous bleaching events

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call