Abstract

In the Australian subtropics, flying-foxes (family Pteropididae) play a fundamental ecological role as forest pollinators. Flying-foxes are also reservoirs of the fatal zoonosis, Hendra virus. Understanding flying fox foraging ecology, particularly in agricultural areas during winter, is critical to determine their role in transmitting Hendra virus to horses and humans. We developed a spatiotemporal model of flying-fox foraging intensity based on foraging patterns of 37 grey-headed flying-foxes (Pteropus poliocephalus) using GPS tracking devices and boosted regression trees. We validated the model with independent population counts and summarized temporal patterns in terms of spatial resource concentration. We found that spatial resource concentration was highest in late-summer and lowest in winter, with lowest values in winter 2011, the same year an unprecedented cluster of spillover events occurred in Queensland and New South Wales. Spatial resource concentration was positively correlated with El Niño Southern Oscillation at 3–8 month time lags. Based on shared foraging traits with the primary reservoir of Hendra virus (Pteropus alecto), we used our results to develop hypotheses on how regional climatic history, eucalypt phenology, and foraging behaviour may contribute to the predominance of winter spillovers, and how these phenomena connote foraging habitat conservation as a public health intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.