Abstract

Freshwater mussels are vital components of stream ecosystems, yet remain threatened. Thus, timely and accurate species counts are critical for proper conservation and management. Mussels live in stream sediments and can be challenging to survey given constraints related to water depth, flow, and time of year. The use of environmental DNA (eDNA) to monitor mussel distributions and diversity is a promising tool. Before it can be used as a monitoring tool, however, we need to know how much eDNA mussels shed into their environment and how long the eDNA persists. Here, we present a novel application of eDNA to estimate both the presence/absence and abundance of a freshwater mussel species, Lampsilis siliquoidea. The eDNA shedding and decay rates reported within are the first for freshwater mussels. We determined that eDNA shedding was statistically similar across mussel densities, but that first-order decay constants varied between experimental treatments. Finally, we effectively modeled downstream transport of eDNA and present a model that can be used as a complementary tool to estimate mussel density. Our results suggest that eDNA has the potential to be a complementary tool to survey mussels and enhance current efforts to monitor and protect freshwater mussel biodiversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call