Abstract

Active environmental DNA (eDNA) surveillance through species-specific amplification has shown increased sensitivity in the detection of non-indigenous species (NIS) compared to traditional approaches. When many NIS are of interest, however, active surveillance decreases in cost- and time-efficiency. Passive surveillance through eDNA metabarcoding takes advantage of the complex DNA signal in environmental samples and facilitates the simultaneous detection of multiple species. While passive eDNA surveillance has previously detected NIS, comparative studies are essential to determine the ability of eDNA metabarcoding to accurately describe the range of invasion for multiple NIS versus alternative approaches. Here, we surveyed twelve sites, covering nine rivers across Belarus for NIS with three different techniques, i.e. an ichthyological, hydrobiological and eDNA survey, whereby DNA was extracted from 500 ml surface water samples and amplified with two 16S rDNA primer assays targeting the fish and macroinvertebrate biodiversity. Nine non-indigenous fish and ten non-indigenous benthic macroinvertebrates were detected by traditional surveys, while seven NISeDNA signals were picked up, including four fish, one aquatic and two benthic macroinvertebrates. Passive eDNA surveillance extended the range of invasion further north for two invasive fish and identified a new NIS for Belarus, the freshwater jellyfish Craspedacusta sowerbii. False-negative detections for the eDNA survey might be attributed to: (i) preferential amplification of aquatic over benthic macroinvertebrates from surface water samples and (ii) an incomplete reference database. The evidence provided in this study recommends the implementation of both molecular-based and traditional approaches to maximise the probability of early detection of non-native organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call