Abstract

AbstractEnvironmental DNA (eDNA) metabarcoding has been widely employed to describe biological communities in the marine environment and to compare the richness and diversity of sites across large spatial scales. However, fine‐scale temporal eDNA dynamics are poorly understood and the time of eDNA sample collection is rarely reported in publications. Here, we collected surface eDNA samples every 6 h, for 3 days, at two coral reef sites to assess fine‐scale changes in the eukaryotic communities detected. Distinct eukaryotic communities were detected at two sites within the same lagoon. Sampling time was found to have a significant effect on ESV and class richness, both peaking during the 1 p.m. sampling time at both sites. Sampling time also had a significant effect on the detection of eukaryotic taxa, with relative read frequency showing clear diurnal patterns in line with the migratory behavior of planktonic groups. Other groups of organisms showed considerable variation in read frequency, highlighting the dynamic nature of marine eukaryotic communities and potential stochasticity of eDNA detections. For eukaryotic communities, eDNA samples can provide a “snapshot” of contemporary biodiversity and provide information on short‐term community dynamics on hyperdiverse coral reefs. However, our findings add to growing evidence that sampling time should be clearly considered and reported in marine eDNA studies and that multiple samples from the same site are needed to facilitate more robust comparisons across sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call