Abstract

We describe a convenient method for amplification of novel epoxide hydrolase-encoding genes directly from the metagenome. In a first step, small specific regions of putative epoxide hydrolase genes were amplified by using PCR with degenerate consensus primers specific for prokaryotic epoxide hydrolases, and environmental DNA as template. In a second step, the sequence obtained from one randomly selected epoxide hydrolase gene fragment served as the starting point for genome-walking PCR. This technique enabled us to recover a complete novel epoxide hydrolase gene with a GC content of 64.7%. A database search revealed that this novel gene was 44% and 43% identical to two putative epoxide hydrolases from Ralstonia metallidurans and Ralstonia eutropha, respectively, at the amino acid level, the highest among all orthologs searched. The gene, which encodes a polypeptide with a molecular mass of 34kDa, was cloned and overexpressed in Escherichia coli. The recombinant enzyme showed hydrolyzing activity toward aliphatic terminal epoxides with chain lengths ranging from 6 to 10 carbon atoms. In all cases, the enantioselectivity of the enzyme was low. Determination of the regioselectivity coefficients αR and αS revealed that the oxirane ring was attacked almost exclusively at the non-substituted carbon of the R-epoxide. The preference for attack at the non-substituted ring carbon of the S-epoxide was dependent on the chain length of the substrate and ranged from 55% to 78%, resulting in a partially enantioconvergent reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.