Abstract

Early detection of aquatic invasive species is a critical task for management of aquatic ecosystems. This task is hindered by the difficulty and cost of surveying aquatic systems thoroughly. The New Zealand mudsnail (Potamopyrgus antipodarum) is a small, invasive parthenogenic mollusk that can reach very high population densities and severely affects ecosystem functioning. To assist in the early detection of this invasive species, we developed and validated a highly sensitive environmental deoxyribonucleic acid (eDNA) assay. We used a dose–response laboratory experiment to investigate the relationship between New Zealand mudsnail density and eDNA detected through time. We documented that as few as 1 individual in 1.5 L of water for 2 d could be detected with this method, and that eDNA from this species may remain detectable for 21 to 44 d after mudsnail removal. We used the eDNA method to confirm the presence of New Zealand mudsnail eDNA at densities as low as 11 to 144 snails/m2 in a eutrophic 5th-order river. Combined, these results demonstrate the high potential for eDNA surveys to assist with early detection of a widely distributed invasive aquatic invertebrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call