Abstract

The continuous decline in Earth’s biodiversity represents a major crisis and challenge for the 21st century, and there is international political agreement to slow down or halt this decline. The challenge is in large part impeded by the lack of knowledge on the state and distribution of biodiversity – especially since the majority of species on Earth are un-described by science. All conservation efforts to save biodiversity essentially depend on the monitoring of species and populations to obtain reliable distribution patterns and population size estimates. Such monitoring has traditionally relied on physical identification of species by visual surveys and counting of individuals. However, traditional monitoring techniques remain problematic due to difficulties associated with correct identification of cryptic species or juvenile life stages, a continuous decline in taxonomic expertise, non-standardized sampling, and the invasive nature of some survey techniques. Hence, there is urgent need for alternative and efficient techniques for large-scale biodiversity monitoring. Environmental DNA (eDNA) – defined here as: genetic material obtained directly from environmental samples (soil, sediment, water, etc.) without any obvious signs of biological source material – is an efficient, non-invasive and easy-to-standardize sampling approach. Coupled with sensitive, cost-efficient and ever-advancing DNA sequencing technology, it may be an appropriate candidate for the challenge of biodiversity monitoring. Environmental DNA has been obtained from ancient as well as modern samples and encompasses single species detection to analyses of ecosystems. The research on eDNA initiated in microbiology, recognizing that culture-based methods grossly misrepresent the microbial diversity in nature. Subsequently, as a method to assess the diversity of macro-organismal communities, eDNA was first analyzed in sediments, revealing DNA from extinct and extant animals and plants, but has since been obtained from various terrestrial and aquatic environmental samples. Results from eDNA approaches have provided valuable insights to the study of ancient environments and proven useful for monitoring contemporary biodiversity in terrestrial and aquatic ecosystems. In the future, we expect the eDNA-based approaches to move from single-marker analyses of species or communities to meta-genomic surveys of entire ecosystems to predict spatial and temporal biodiversity patterns. Such advances have applications for a range of biological, geological and environmental sciences. Here we review the achievements gained through analyses of eDNA from macro-organisms in a conservation context, and discuss its potential advantages and limitations for biodiversity monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call