Abstract

This study investigated the effects of various environmental conditions on the hardness and elastic modulus of restorative glass-ionomer cements (GICs). Two resin-modified GICs (RMGICs) (Fuji II LC [FL]; Photac-Fil Quick [PQ]) and three highly viscous GICs (HVGICs) (Fuji IX Fast [FN]; KetacMolar [KM]; KetacMolar Quick [KQ]) were evaluated in this study. Specimens were fabricated according to the manufacturers' instructions and stored under a variety of conditions (n = 7): 100% humidity, distilled water, pH 5 demineralization solution, and pH 7 remineralization solution. The hardness and elastic modulus were measured using a depth-sensing microindentation test after 4 weeks. The results were analyzed using the independent samples T-test and ANOVA/Scheffe's post hoc test (p < 0.05). HVGICs showed significantly higher hardness and elastic modulus than RMGICs under all storage conditions. Storage in distilled water significantly increased the hardness and elastic modulus of FN, but decreased that of PQ. All HVGICs and RMGICs stored in remineralization solution had hardness values and elastic moduli comparable to those stored in water. Compared to remineralization solution, demineralization solution had no significant effects on the modified GICs with the exception of KQ. The results suggest that the mechanical properties of glass-ionomer restoratives are material-type and storage condition dependent. Therefore, the clinical selection of a glass-ionomer material should be based on the oral environment to which it will be subjected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.