Abstract

Environmental data are growing in complexity, size, and resolution. Addressing the types of large, multidisciplinary problems faced by today's environmental scientists requires the ability to leverage available data and information to inform decision making. Successfully synthesizing heterogeneous data from multiple sources to support holistic analyses and extraction of new knowledge requires application of Data Science. In this paper, we present the origins and a brief history of Data Science. We revisit prior efforts to define Data Science and provide a more modern, working definition. We describe the new professional profile of a data scientist and new and emerging applications of Data Science within Environmental Sciences. We conclude with a discussion of current challenges for Environmental Data Science and suggest a path forward.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.