Abstract

Environmental cracking (EC) susceptibility of low-alloy steels with a specified minimum yield strength of 655 MPa (95 ksi) and 758 MPa (110 ksi) manufactured by quenching and tempering heat treatments was investigated in high H2S partial pressures (more than 1.0 MPa) using four-point bend tests in autoclaves. The H2S partial pressures and testing temperatures varied from 1.0 MPa to 10 MPa and 24°C to 150°C, respectively. Materials of grades 95 ksi and 110 ksi containing high Cr and Mo showed no macrocracking under all tested conditions. Localized corrosion occurred at several locations after exposure for 1 month under high H2S pressure and high-temperature conditions. It was concluded that the localized corrosion did not form macrocracking even after long-term (3 months) immersion tests. On the other hand, 110 ksi grade material containing low Cr and Mo suffered from sulfide stress cracking at low temperatures (below 66°C) and at an H2S pressure of 1.0 MPa. The material also showed EC at an H2S pressure of 10 MPa and temperature from 107°C to 150°C. The difference of EC susceptibility among the materials is discussed based on corrosion reactions, hydrogen absorption, and morphologies of the corrosion products on the steel surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call