Abstract

The environmental controls on modern peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland were investigated to assess the potential for Holocene palaeoclimate research within this region. Canonical Correspondence Analysis (CCA) revealed that hydrological factors (water table depth and moisture content) are the most important abiotic controls on organism distribution. A series of partial CCAs showed that water table depth explains 15.8% and moisture content explains 5.5% of the total variance. Monte-Carlo permutation tests showed that the results are highly significant (p < 0.002; p < 0.040 respectively). Transfer functions were generated for water table depth using weighted averaging tolerance downweighted (WA-Tol) regression and for moisture content using weighted averaging partial least squares regression (WA-PLS). The performance of the models was assessed using leave-one-out cross-validation (jacknifing). After removal of outlier samples, the improved transfer functions were found to perform well with an r jack 2 and root mean square error of predictionjack of 0.83, 4.99 cm for water table depth and 0.76, 4.60% for moisture content respectively. The water table transfer function was applied to a fossil peat sequence from this region and reconstruction errors were generated by 1,000 bootstrap cycles. The water table reconstruction was also carried out using an established pan-European transfer function and was found to be similar to that based on the North of Ireland dataset. This demonstrates the persistent and comparable control of hydrological variables on the distribution of testate amoebae taxa across Europe and implies that regional training sets can suffice as long as no-analogue situations are not encountered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call