Abstract

Qinghai spruce forests, found in the Qilian mountains, are a typical type of water conservation forest and play an important role in regulating the regional water balance and quantifying the changes and controlling factors for evapotranspiration (ET) and its components, namely, transpiration (T), evaporation (Es) and canopy interceptions (Ei), of the Qinghai spruce, which may provide rich information for improving water resource management. In this study, we partitioned ET based on the assumption that total ET equals the sum of T, Es and Ei, and then we analyzed the environmental controls on ET, T and Es. The results show that, during the main growing seasons of the Qinghai spruce (from May to September) in the Qilian mountains, the total ET values were 353.7 and 325.1 mm in 2019 and 2020, respectively. The monthly dynamics in the daily variations in T/ET and Es/ET showed that T/ET increased until July and gradually decreased afterwards, while Es/ET showed opposite trends and was mainly controlled by the amount of precipitation. Among all the ET components, T always occupied the largest part, while the contribution of Es to ET was minimal. Meanwhile, Ei must be considered when partitioning ET, as it accounts for a certain percentage (greater than one-third) of the total ET values. Combining Pearson's correlation analysis and the boosted regression trees method, we concluded that net radiation (Rn), soil temperature (Ts) and soil water content (SWC) were the main controlling factors for ET. T was mainly determined by the radiation and soil hydrothermic factors (Rn, photosynthetic active radiation (PAR) and TS30), while Es was mostly controlled by the vapor pressure deficit (VPD), atmospheric precipitation (Pa), throughfall (Pt) and air temperature (Ta). Our study may provide further theoretical support to improve our understanding of the responses of ET and its components to surrounding environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.