Abstract

Environmental control of the annual growth cycle of ‘Glen Ample’ raspberry has been studied in order to facilitate crop manipulation for out-of-season production. Plants propagated from root buds were raised in long days (LD) at 21 °C and then exposed to different temperature and daylength conditions at varying ages. Shoot growth was monitored by weekly measurements and floral initiation by regular sampling and examination of axillary bud #5. Under natural summer daylight conditions at 60°N shoot growth was nearly doubled at 21 °C compared with 15 °C, while at 9 °C one half of the plants ceased growing and formed flower buds at midsummer. Developing shoots have a juvenile phase and could not be induced to flower before the 15-leaf stage. No significant reduction in induction requirements was found in larger plants. Plants exposed to natural light conditions from 10th August, had an immediate growth suppression at 9 and 12 °C with complete cessation after 4 weeks (by September 7). This coincided with the first appearance of floral primordia. At 15 °C both growth cessation and floral initiation occurred 2 weeks later (by September 21), while at 18 °C continuous growth with no floral initiation was maintained until early November when the photoperiod had fallen below 9 h. The critical photoperiod for growth cessation and floral initiation at 15 °C was 15 h. Plants exposed to 10-h photoperiods at 9 °C for 2–4 weeks had a transient growth suppression followed by resumed growth under subsequent high temperature and LD conditions, while exposure for 5 or 6 weeks resulted in complete growth cessation and dormancy induction. The critical induction period for floral initiation was 3 weeks although no transitional changes were visible in the bud before week 4. When exposed to inductive conditions for marginal periods of 3 or 4 weeks, an increasing proportion of the plants (20% and 67%, respectively), behaved as primocane flowering cultivars with recurrent growth and terminal flowering. It is concluded that growth cessation and floral initiation in raspberry are jointly controlled by low temperature and short day conditions and coincide in time as parallel outputs from the same internal induction mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call