Abstract

The signals available for navigation depend on the environment. To operate reliably in a wide range of different environments, a navigation system is required to adopt different techniques based on the environmental contexts. In this paper, an environmental context detection framework is proposed, building the foundation of a context adaptive navigation system. Different land environments are categorized into indoor, urban, and open-sky environments based on how Global Navigation Satellite System (GNSS) positioning performs in these environments. Indoor and outdoor environments are first detected based on the availability and strength of GNSS signals using a hidden Markov model. Then the further classification of outdoor environments into urban and open-sky is investigated. Pseudorange residuals are extracted from raw GNSS measurements in a smartphone and used for classification in a fuzzy inference system alongside the signal strength data. Practical test results under different kinds of environments demonstrate an overall 88.2 percent detection accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.