Abstract

This study enhanced our understanding of antibiotic mixtures' occurrence, transformation, toxicity, and ecological risks. The role of acid-modified biochar (BC) in treating antibiotic residues was explored, shedding light on how BC influences the fate, mobility, and environmental impact of antibiotics and transformation products (TPs) in an activated sludge (AS) microbiome. A mixture of oxytetracycline and sulfamethoxazole was found to synergistically (or additively) inhibit cell growth of AS and disrupt the microbiome structure, species richness/diversity, and function. The formation of TPs with potentially higher toxicity and persistence than the original compounds was identified, explaining the microbiome disruption. Agricultural waste-derived BC was optimized for contaminant adsorption, leading to a reduction in toxicity when added to AS by sequestering TPs on its surface. This work highlighted adsorbents as a practical engineering strategy for mitigating liquid-phase contaminants' toxicological consequences, proactively controlling the fate and effects of antibiotics and TPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call