Abstract

Fungal hydrophobins are amphipathic, highly surface-active, and self-assembling proteins. The class I hydrophobin Vmh2 from the basidiomycete fungus Pleurotus ostreatus seems to be the most hydrophobic hydrophobin characterized so far. Structural and functional properties of the protein as a function of the environmental conditions have been determined. At least three distinct phenomena can occur, being modulated by the environmental conditions: (1) when the pH increases or in the presence of Ca(2+) ions, an assembled state, β-sheet rich, is formed; (2) when the solvent polarity increases, the protein shows an increased tendency to reach hydrophobic/hydrophilic interfaces, with no detectable conformational change; and (3) when a reversible conformational change and reversible aggregation occur at high temperature. Modulation of the Vmh2 conformational/aggregation features by changing the environmental conditions can be very useful in view of the potential protein applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.