Abstract

AbstractSexual selection can be shaped by spatial variation in environmental features among populations. Differences in sexual selection among populations generated through the effects of the environment could be shaped via four paths: differences in mean absolute fitness, differences in the means or variances of phenotypes, or differences in the absolute fitness-trait function relationship. Because sexual selection occurs only during the adult life stage, most studies have focused on identifying environmental features that influence these metrics of fitness and trait distributions among adults. However, these adult features could also be affected by environmental factors experienced in early life stages that then shape the trajectory for sexual selection during the adult life stage. Here we investigated how among-population variation in environmental conditions during the juvenile (larval) stage of two species of Enallagma damselflies shapes sexual selection on male body size. We found that environmental factors related to predation pressures, lake primary productivity, and habitat availability play a role in shaping spatial variation in sexual selection. This acts mainly through how the environment affects absolute fitness-body size associations, not spatial variation in mean fitness or body size means and variances. These results demonstrate that the underpinnings of sexual selection in the wild can arise from environmental conditions during prereproductive life stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call