Abstract

In future engineering applications, it is important for a direct-drive permanent magnet (DDPM) wind generator to be designed with optimized environmental condition boundary. This paper presents a novel extreme joint probability distribution method of boundary design to formulate the evaluation model and correlation between component design and environmental conditions. With this method, the joint probability distributions of multidimensional parameters for typical wind resource areas in China are studied. A 3.3-MW DDPM wind generator is involved in the case study to validate the superiority of the method. Furthermore, to improve the generalizability of the method, some typical wind resource data platforms are calibrated regarding the measured data. It is shown that the ERA5 dataset can be used as a supplement to enhance the representativeness of the measured data for the joint probability distributions. Therefore, the proposed method can be potentially used to optimize the system design of future DDPM wind generators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call