Abstract

High organic content industrial wastewater (HOCIW) from typical industrial sectors has a tremendous potential for energy recovery. The energy recovery capacity and contribution to mitigating multiple environmental impacts synergistically at regional scale remain elusive. Targeting HOCIW from typical industrial sectors (including Food products, Textiles, Leather & clothing products, Paper & printing, and Pharmaceuticals) in 30 Chinese provincial regions, the energy input and output, as well as direct and indirect environmental impacts in the background scenario (sequencing batch reactor system) and foreground scenario (expanded granular sludge blanket + biogas power generation system) are evaluated. By comparing two scenarios, the environmental co-benefits of energy recovery from HOCIW are unraveled from life cycle and multi-impact category perspectives. Results indicate that Freshwater eutrophication and Marine eutrophication are the most remarkable impact categories (with the normalized score of impact potential greater than 0.005), followed by Global warming and Stratospheric ozone depletion (within 0.001–0.002). Attributed to power and fertilizer offsets, seven out of eight impact categories can be mitigated, except Freshwater eutrophication. There is the most remarkable mitigation effect on Fine particulate matter formation, ranging from −526.7% to −786.0% across regions. Shandong, Guangdong, Jiangsu, Zhejiang and Fujian are more prominent in terms of the impact potential and energy and resource recovery potentials. The findings can provide support for regional policy design regarding wastewater treatment considering energy recovery and environmental impact mitigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call