Abstract

Blooms of some pico/nanophytoplankton have occurred frequently along the Qinhuangdao coast since 2009, and it is necessary to identify the critical environmental factors inducing them. In this study, variations in the physical and nutrient characteristics of the seawater were analyzed following the development of local blooms in 2013. The local environmental characteristics were also compared with those of the Changjiang River estuary, China, and the Long Island estuaries in the USA, which are also prone to blooms of special algal species. In Qinhuangdao the local water temperature varied seasonally and rose above 15°C in 2013 early summer, coincident with the water discoloration. The salinity was more than 28 with a variation range of <3 throughout the year. Our results suggest that the physical conditions of the Qinhuangdao coastal area were suitable for the explosive proliferation of certain pico/nanophytoplankton, e.g. Aureococcus anophagefferens. The water supporting the bloom was not in a condition of serious eutrophication, but there were relatively high concentrations of reduced nitrogen (especially ammonium), which acted as an important nitrogen source for the pico/nanophytoplankton bloom. There was also a large gap between total nitrogen (TN) and dissolved inorganic nitrogen (DIN). Although the phosphate concentration was relatively low, there was no evidence of phosphorus limitation to the growth of pico/nanophytoplankton during bloom events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.