Abstract

The upper part of the upper Permian succession in the Bowen Basin of Queensland, NE Australia, was investigated to ascertain the timeline and character of environmental changes in this high southern palaeolatitudinal setting leading up to the End-Permian Extinction (EPE). The study focused on (in ascending order) the Peawaddy Formation, Black Alley Shale, and Bandanna Formation, and laterally correlative units. In the western Bowen Basin, the base of the Peawaddy Formation (257 Ma) records the onset of thrust loading and volcanic activity associated with the Hunter-Bowen contractional orogeny. The Peawaddy Formation comprises a series of coarsening-upward, terrigenous clastic intervals interpreted as the product of repeated progradation of deltas into shallow, open marine environments. The overlying Black Alley Shale also comprises multiple deltaic coarsening-upward cycles, which accumulated in stressed, restricted marine environments. The uppermost Bandanna Formation and equivalents formed in extensive coastal plain to estuarine environments. All three formations accumulated under the influence of explosive volcanic activity from the emerging continental volcanic arc to the east of the foreland basin. Volcanism peaked during deposition of the Black Alley Shale around the Wuchiapingian–Changhsingian transition. Abundant dispersed gravel and glendonites (calcite pseudomorphs after ikaite) indicate that the Peawaddy Formation formed under the influence of cold conditions and possible glacial ice (P4 Glaciation; Wuchiapingian Stage). Direct evidence of cold conditions ends at the top of the Peawaddy Formation (254.5 Ma); however, Chemical Index of Alteration (CIA) data suggest that surface conditions remained cold through the accumulation of the Black Alley Shale, and the lower Bandanna until c. 253 Ma, before gradually rising through the upper Bandanna Formation. The end of P4 glaciation is also characterized by a major spike in the abundance of marine acritarchs ( Micrhystridium evansii Acme Zone), reflecting the development of a regional restricted basin of elevated nutrient concentrations but reduced salinity. In contrast to this short interval of stressed marine conditions, the fossil floras indicate remarkably consistent terrestrial ecosystems throughout the late Lopingian until the EPE. The terrestrial EPE is recorded by a distinctive, laminated mudrock bed (‘Marker Mudstone’) that records a palynological ‘dead zone’ above the uppermost coal seam or equivalent root-penetrated horizon followed by spikes in non-marine algal abundance. Overall, the time interval 257–252 Ma represented by the studied succession does not record a simple monotonic change in palaeoenvironmental conditions, but rather a series of intermittent stepwise changes towards warmer, and more environmentally stressed conditions leading up to the EPE in eastern Australia. • Lopingian (257–251.9 Ma) succession investigated in Bowen Basin, northeastern Australia, Several major palaeoenvironmental changes are recorded, • P4 Glaciation lasted until 254.5 Ma, cold climate persisted until 253 Ma, • Major algal bloom associated with restriction of marine circulation occurred at 254.5 Ma, • Climate warmed after 253 Ma towards end-Permian, but continental flora was stable until abrupt collapse at c. 252 Ma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.