Abstract

An animal’s phenotype may be shaped by its genes, but also reflects its own environment and often that of its parents. Nongenetic parental effects are often mediated by steroid hormones, and operate between parents and offspring through mechanisms that are well described in vertebrate and model systems. However, less is understood about the strength and frequency of hormone mediated nongenetic parental effects across more than one generation of descendants, and in nonmodel systems. Here we show that the concentration of active ecdysteroid hormones provided by a female house cricket (Acheta domesticus) affects the growth rate of her offspring. We also reveal that variation in the active ecdysteroid hormones provided by a female house cricket to her eggs derives primarily from the quality of nutrition available to her maternal grandmother, regardless of genetic background. This finding is in stark contrast to most previous work that documents a decline in the strength of environmentally based parental effects with each passing generation. Strong grandparental effects may be adaptive under predictable, cyclical changes in the environment. Our results also suggest that hormone-mediated grand-maternal effects represent an important potential mechanism by which organisms can respond to environmental variability, and that further study of hormone-mediated carryover effects in this context could be profitable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.