Abstract

Abiotic-biotic interactions have shaped organic evolution since life first began. Abiotic factors influence growth, survival, and reproductive success, whereas biotic responses to abiotic factors have changed the physical environment (and indeed created new environments). This reciprocity is well illustrated by land plants who begin and end their existence in the same location while growing in size over the course of years or even millennia, during which environment factors change over many orders of magnitude. A biomechanical, ecological, and evolutionary perspective reveals that plants are (i) composed of materials (cells and tissues) that function as cellular solids (i.e. materials composed of one or more solid and fluid phases); (ii) that have evolved greater rigidity (as a consequence of chemical and structural changes in their solid phases); (iii) allowing for increases in body size and (iv) permitting acclimation to more physiologically and ecologically diverse and challenging habitats; which (v) have profoundly altered biotic as well as abiotic environmental factors (e.g. the creation of soils, carbon sequestration, and water cycles). A critical component of this evolutionary innovation is the extent to which mechanical perturbations have shaped plant form and function and how form and function have shaped ecological dynamics over the course of evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call