Abstract
Small pore zeolites with chabazite structure have been commercialized for selective catalytic reduction (SCR) of nitrogen oxides (NOx) with ammonium (NH3) from diesel exhaust. However, conventional zeolite synthesis processes detrimental effects on the environment due to the consumption of large amount of water, organic templates. Thus, this study proposed a green synthesis process with addition of minimal amount of water, structure directing agent and shortened steps to prepare nano-sized SSZ-13 (0.12 μm) using trans-crystallization strategy and exhibited enhanced performance for NOx removal after copper ion-exchange. The operation temperature window (NOx conversion >90 %) as well as the SO2 and H2O resistance over the green-route prepared nano-sized SSZ-13 (178−480 °C) outperformed the conventional SSZ-13 (29.8 μm, 211−438 °C) mainly due to the much shorter diffusion path. This clearly implied that the mass transportation was key for NH3-SCR of NOx on such small pore zeolite catalysts, which was further confirmed via an in-depth mass transportation calculation process. These results demonstrate that the Cu-nano-sized SSZ-13 prepared by the environmental benign route has great potential to act as a new generation of deNOx catalyst for diesel exhaust and provided a guideline for researchers to develop new methods to synthesize nano-catalysts for air pollution control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.