Abstract

The chelating and sequestering ability of a glyphosate metabolite, the aminomethylphosphonic acid (AMPA) towards bi- and trivalent metal cations, such as Ca2+, Mg2+, Zn2+, Cu2+ and Al3+, were investigated in aqueous solutions of NaCl, in an ionic strength range of 0.1 ≤ I/mol dm−3 ≤ 1.0 and at constant temperature of T = 298.15 ± 0.15 K. The investigations on the acid-base properties and complexing ability were performed, by means of potentiometry, in conditions of different cM:cAMPA molar ratios and pH values. The formation of insoluble species was experimentally observed in the Mn+/AMPA2− systems, and the solid phases were characterized by means of X-Ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and InfraRed Attenuated Total Reflection spectroscopy (IR-ATR). The dependence on ionic strength of the stability constants of the Mn+/AMPA2− complexes species, determined at different ionic strengths, was modelled by the Debye-Hückel type equation. The sequestering ability of AMPA toward the investigated metal cations was evaluated by pL0.5 parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.