Abstract

Acquisition of azole resistance by clinically relevant yeasts in nature may result in a significant, yet undetermined, impact in human health. The main goal of this study was to assess the development of cross-resistance between agricultural and clinical azoles by Candida spp. An in vitro induction assay was performed, for a period of 90 days, with prochloraz (PCZ) - an agricultural antifungal. Afterward, the induced molecular resistance mechanisms were unveiled. MIC value of PCZ increased significantly in all Candida spp. isolates. However, only C.glabrata developed cross-resistance to fluconazole and posaconazole. The increased MIC values were stable. Candida glabrata azole resistance acquisition triggered by PCZ exposure involved the upregulation of the ATP binding cassette multidrug transporter genes and the transcription factor, PDR1. Single mutation previously implicated in azole resistance was found in PDR1 while ERG11 showed several synonymous single nucleotide polymorphisms. These results might explain why C.glabrata is so commonly less susceptible to clinical azoles, suggesting that its exposure to agricultural azole antifungals may be associated to the emergence of cross-resistance. Such studies forward potential explanations for the worldwide increasing clinical prevalence of C.glabrata and the associated worse prognosis of an infection by this species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.