Abstract

The current landfill gas (LFG) management (based on flaring and utilization for heat generation of the collected gas) and three potential future gas management options (LFG flaring, heat generation and combined heat and power generation) for the Old Ammässuo landfill (Espoo, Finland) were evaluated by life-cycle assessment modeling. The evaluation accounts for all resource utilization and emissions to the environment related to the gas generation and management for a life-cycle time horizon of 100 yr. The assessment criteria comprise standard impact categories (global warming, photo-chemical ozone formation, stratospheric ozone depletion, acidification and nutrient enrichment) and toxicity-related impact categories (human toxicity via soil, via water and via air, eco-toxicity in soil and in water chronic). The results of the life-cycle impact assessment show that disperse emissions of LFG from the landfill surface determine the highest potential impacts in terms of global warming, stratospheric ozone depletion, and human toxicity via soil. Conversely, the impact potentials estimated for other categories are numerically-negative when the collected LFG is utilized for energy generation, demonstrating that net environmental savings can be obtained. Such savings are proportional to the amount of gas utilized for energy generation and the gas energy recovery efficiency achieved, which thus have to be regarded as key parameters. As a result, the overall best performance is found for the heat generation option - as it has the highest LFG utilization/energy recovery rates - whereas the worst performance is estimated for the LFG flaring option, as no LFG is here utilized for energy generation. Therefore, to reduce the environmental burdens caused by the current gas management strategy, more LFG should be used for energy generation. This inherently requires a superior LFG capture rate that, in addition, would reduce fugitive emissions of LFG from the landfill surface, bringing further environmental benefits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.