Abstract

During the combustion of municipal solid waste (MSW), energy is produced which can be utilized to generate electricity. However, electricity production from incineration has to be evaluated from the point view of the environmental performance. In this study, environmental impacts of electricity production from waste incineration plant in Thailand are compared with those from Thai conventional power plants. The evaluation is based on a life cycle perspective using life cycle assessment (LCA) as the evaluation tool. Since MSW incineration provides two services, viz., waste management and electricity production, the conventional power production system is expanded to include landfilling without energy recovery, which is the most commonly used waste management system in Thailand, to provide the equivalent function of waste management. The study shows that the incineration performs better than conventional power plants vis-a-vis global warming and photochemical ozone formation, but not for acidification and nutrient enrichment. There are some aspects which may influence this result. If landfilling with gas collection and flaring systems is included in the analysis along with conventional power production instead of landfilling without energy recovery, the expanded system could become more favorable than the incineration in the global warming point of view. In addition, if the installation of deNOx process is employed in the MSW incineration process, nitrogen dioxide can be reduced with a consequent reduction of acidification and nutrient enrichment potentials. However, the conventional power plants still have lower acidification and nutrient enrichment potentials. The study shows that incineration could not play the major role for electricity production, but in addition to being a waste management option, could be considered as a complement to conventional power production. To promote incineration as a benign waste management option, appropriate deNOx and dioxin removal processes should be provided. Separation of high moisture content waste fractions from the waste to be incinerated and improvement of the operation efficiency of the incineration plant must be considered to improve the environmental performance of MSW incineration. This study provides an overall picture and impacts, and hence, can support a decision-making process for implementation of MSW incineration. The results obtained in this study could provide valuable information to implement incineration. But it should be noted that the results show the characteristics only from some viewpoints. Further analysis is required to evaluate the electricity production of the incineration plant from other environmental aspects such as toxicity and land-use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call