Abstract
This work is focused on the application of Cu-containing zeolites as potential environmental sensors for monitoring carbon monoxide. A number of commercial zeolites with different structural properties (NaX, NaY, MOR, FER, BEA and ZSM-5) were modified using CuSO4, Cu(NO3)2 and Cu(OAc)2 solutions as copper sources to prepare Cu+-containing zeolites, since Cu+ forms stable complexes with CO at room temperature that can be monitored by infrared spectroscopy. Zeolite impregnation with Cu(NO3)2 resulted in the highest total Cu-loadings, while the Cu(OAc)2-treated samples had the highest Cu+/Cutotal ratio. Cu(NO3)2-impregnated MOR, which displayed the highest concentration of Cu+, was subjected to a number of tests to evaluate its performance as a potential CO sensor. The working temperature and concentration ranges of the sensor were determined to be from 20 to 300 °C and from 10 to 10,000 ppm, respectively. The stepwise CO desorption experiments indicated that the sensor can be regenerated at 400 °C if required. Additional analyses under realistic flow conditions demonstrated that for hydrophilic zeolites, the co-adsorption of water can compromise the sensor’s performance. Therefore, a hydrophobic Sn-BEA was utilised as a parent material for the preparation of an impregnated Cu-Sn-BEA zeolite, which exhibited superior resistance to interfering water while maintaining its sensing properties. Overall, the prepared Cu-modified zeolites showed promising potential as environmental CO sensors, displaying high sensitivity and selectivity under representative testing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.