Abstract
In this study, we firstly develop the photo-Fenton-like system with millimetric sponge iron (s-Fe0), H2O2, visible light (vis, λ≥420nm) and rhodamine B (RhB), and present a comprehensive study concerning the mechanism. Thus, we investigate (1) the adsorption of RhB onto s-Fe0, (2) the photo-Fenton-like removal of RhB over iron oxides generated from the corrosion of s-Fe0, (3) the homogeneous photo-Fenton removal of RhB over Fe2+ or Fe3+, (4) the Fe3+-RhB complexes, and (5) the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA).The results show that neither the adsorption process over s-Fe0 nor the photo-Fenton-like process over FeOOH, Fe3O4 and Fe2O3, achieved efficient removal of RhB. For comparison, in homogeneous photo-Fenton process, the presence of Fe3+ ions, rather than Fe2+ ions, effectively eliminated RhB. Furthermore, the UV–vis spectra showing new absorbance at∼285nm indicate the complexes of RhB and Fe3+ ions, adopting vis photons to form excited state and further eject one electron via ligand-to-metal charge-transfer to activate H2O2. Additionally, efficient TBBPA removal was obtained only in the presence of RhB. Accordingly, the s-Fe0– based photo-Fenton-like process assisted with dyestuff wastewater is promising for removing a series of persistent organic pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.