Abstract

Solar-driven photocatalytic generation of H2O2 over metal-free catalysts is a sustainable approach for value-added chemical production. Here, we synthesized chlorine-doped graphitic carbon nitride (Cl-doped g-C3N4) through a solvothermal method to effectively produce H2O2 with a rate of 1.19 ± 0.06 µM min−1 under visible light irradiation, which was improved by 104 times compared to pristine g-C3N4. Continuous net production of H2O2 was realized at a rate of 2.78 ± 0.10 µM min−1 up to 54 h with isopropanol as the hole scavenger, whereas H2O2 production was only sustained for ~ 6 h without scavengers. Both molecular simulations and advanced spectroscopic characterizations elucidated that the Cl dopant increased the charge transfer rate, decreased the bandgap, and reduced the activation energy of the rate-limiting step of O2 reduction, all of which favored H2O2 production. This work implemented a novel metal-free photocatalyst for sustainable H2O2 production and elucidated the mechanism for promoting H2O2 production that can guide future photoreactive nanomaterial design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call