Abstract

Partial barriers to migration can affect migratory fish population dynamics and be influenced by many biotic, abiotic, and anthropogenic factors, including nutritional deficiencies. We investigated how such variables (including a thiamine deficiency) impact fine-scale movement of landlocked Atlantic salmon (Salmo salar) by treating returning spawners with thiamine and observing their attempts to climb a human-altered, high velocity stretch of river using fine-scale radio telemetry. Multiple re-entries into a river section, along with water temperature, strongly influenced movement rates. High or increasing discharge encouraged downstream movement; males abandoned migratory attempts at a higher rate than females. Although thiamine-injected salmon exhibited greater migratory duration, this did not produce a measurable improvement in passage performance, possibly due to the difficulty associated with this section of river — among 24 tagged salmon staging 10.9 attempts each and lasting 1.5 days per attempt on average, only three traversed the entire reach. This study provides new insights into how biotic and abiotic variables affect fish movement, while suggesting limits to the potential for human intervention (thiamine injections) to assist passage through partial migratory barriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.