Abstract

The foundry industry generates large amounts of residual byproducts, such as waste foundry sand (WFS). This high generation has motivated studies concerning the disposition of WFS, which in turn can be used for road subbases. Nevertheless, paving applications are still limited, especially regarding the behavior of WFS when added to a mixture of crushed materials. Hence, the objective of this study was to evaluate WFS reuse in mixtures with crushed materials, applied as granular layers of granulometric stabilized pavements. The crushed materials and WFS were characterized by size distribution, physical aspects, and different mixtures, and later submitted to mechanical testing. Initial tests were utilized to define mixtures (crushed material + WFS) that fulfilled the technical requirements for road subbases. California bearing ratio and resilient modulus tests indicated that WFS additions up to 12% for “A” grading improved the bearing capacity of the mixture; while in “E” grading, WFS additions up to 38% resulted in no expressive improvement in bearing characteristics. Thus, for both gradings, a structure with high density, strength, and low susceptibility to deformations can be used for road subbase construction without technical issues. Finally, the highest WFS content (38%) mixture was environmentally classified as a Class II A non-inert waste, indicating its environmental viability for road applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.